Tutorial 2

Throughout, V is a finite-dimensional inner product space.

1. Suppose $T \in \mathcal{L}(V)$ is such that for all $u, v \in V$,

$$
\langle T(u), v\rangle=\langle u, T(v)\rangle
$$

Let $\beta=\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis for V and define $A={ }_{\beta}[T]_{\beta}$. What can you say about A ?
2. (Bessel's Inequality) Let $\alpha=\left\{e_{1}, \ldots, e_{n}\right\} \subseteq V$ be an orthonormal set. Show that for all $v \in V$,

$$
\|v\|^{2} \geq \sum_{k=1}^{n}\left|\left\langle v, e_{k}\right\rangle\right|^{2}
$$

When do we have equality?
3. Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis for V. Show that for all $u, v \in V$,

$$
\langle u, v\rangle=\sum_{k=1}^{n}\left\langle u, e_{k}\right\rangle\left\langle e_{k}, v\right\rangle
$$

4. Show there exists $p \in \mathcal{P}_{2}(\mathbb{R})$ such that for all $f \in \mathcal{P}_{2}(\mathbb{R})$,

$$
\int_{0}^{1} f(x) d x=f(-7) p(-7)+f(1) p(1)+f(\pi) p(\pi)
$$

5. A real $n \times n$ matrix A is orthogonal if the columns of A form an orthonormal basis for \mathbb{R}^{n} (equipped with the standard inner product).

Show that if A is a 2×2 orthogonal matrix then there exists $\theta \in \mathbb{R}$ such that

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { or } \quad A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

6. (6.B.12) Suppose $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$ are two inner products on V with norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, respectively. Prove there exists a positive number c such that for all $v \in V$,

$$
\|v\|_{1} \leq c\|v\|_{2}
$$

7. (a) Suppose $\mathbb{F}=\mathbb{R}$ and $v_{1}, \ldots, v_{k} \in V$ are such that for all $i, j \in\{1, \ldots, k\},\left\langle v_{i}, v_{j}\right\rangle>1$ when $i=j$ and $\left\langle v_{i}, v_{j}\right\rangle=1$ when $i \neq j$. Prove $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent.
(b) Let S_{1}, \ldots, S_{k} be distinct subsets of $\{1, \ldots, n\}$ such that for all $i, j \in\{1, \ldots, n\}$ distinct, $S_{i} \cap S_{j}$ contains exactly one element. Prove $k \leq n$.
