Tutorial 2

Throughout, V is a finite-dimensional inner product space.

1. Suppose $T \in \mathcal{L}(V)$ is such that for all $u, v \in V$,

$$\langle T(u), v \rangle = \langle u, T(v) \rangle$$

Let $\beta = (e_1, \ldots, e_n)$ be an orthonormal basis for V and define $A = {}_{\beta}[T]_{\beta}$. What can you say about A?

2. (Bessel's Inequality) Let $\alpha = \{e_1, \ldots, e_n\} \subseteq V$ be an orthonormal set. Show that for all $v \in V$,

$$\|v\|^2 \ge \sum_{k=1}^n |\langle v, e_k \rangle|^2$$

When do we have equality?

3. Let (e_1, \ldots, e_n) be an orthonormal basis for V. Show that for all $u, v \in V$,

$$\langle u, v \rangle = \sum_{k=1}^{n} \langle u, e_k \rangle \langle e_k, v \rangle$$

4. Show there exists $p \in \mathcal{P}_2(\mathbb{R})$ such that for all $f \in \mathcal{P}_2(\mathbb{R})$,

$$\int_0^1 f(x) \, dx = f(-7)p(-7) + f(1)p(1) + f(\pi)p(\pi)$$

5. A real $n \times n$ matrix A is *orthogonal* if the columns of A form an orthonormal basis for \mathbb{R}^n (equipped with the standard inner product).

Show that if A is a 2×2 orthogonal matrix then there exists $\theta \in \mathbb{R}$ such that

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \text{or} \qquad A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

6. (6.B.12) Suppose $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are two inner products on V with norms $\|\cdot\|_1$ and $\|\cdot\|_2$, respectively. Prove there exists a positive number c such that for all $v \in V$,

$$||v||_1 \le c ||v||_2$$

- 7. (a) Suppose $\mathbb{F} = \mathbb{R}$ and $v_1, \ldots, v_k \in V$ are such that for all $i, j \in \{1, \ldots, k\}, \langle v_i, v_j \rangle > 1$ when i = j and $\langle v_i, v_j \rangle = 1$ when $i \neq j$. Prove (v_1, \ldots, v_k) is linearly independent.
 - (b) Let S_1, \ldots, S_k be distinct subsets of $\{1, \ldots, n\}$ such that for all $i, j \in \{1, \ldots, n\}$ distinct, $S_i \cap S_j$ contains exactly one element. Prove $k \leq n$.